Interruptions in Gene Expression Drive Operons to the Leading Strand of DNA Replication

M.N. Price^{1,4}, E.J. Alm^{1,4}, A.P. Arkin^{1,2,3 4}

BERKELEY LAU

¹Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, ²Howard Hughes Medical Institute, Berkeley, CA, USA, ³Department of Bioengineering, UC Berkeley

⁴Virtual Institute for Microbial Stress and Survival

Abstract

Which genes are strongly biased to the leading strand?

- Essential genes
- Operons
 - Stronger bias for highly expressed or ubiquitous operons

Why are genes selected to the leading strand?

- Genes on the leading strand experience head-on collisions between DNA and RNA polymerases
- Head-on collisions slow the fork
 - Slowing the fork doesn't explain why essential genes show the strongest bias
- Head-on collisions interrupt gene expression for longer Explains the strand bias of essential genes & operons

Theories of Strand Bias

- Lagging strand slows the replication fork (Brewer)
 - Inconsistent with strong bias of essential genes relative to other highly expressed genes (Rocha)
- Toxic truncated peptide hypothesis (Rocha)
 - Does not explain bias of operons
 - Inconsistent with the peptide tag of tmRNA being nonessential
- · Collisions (briefly) interrupt gene expression
 - Leading strand slows the fork => longer interruptions
 - Interrupting expression of essential genes or ubiquitous operons is more deleterious
 - Interruptions are longer for genes in operons
 - Interruptions are longer for highly expressed genes?
- Weak selective force => weak effect
 - Not observable for every chromosome or every type of gene